Implicit bias in AI systems primarily stems from the datasets they are trained on. These datasets often contain historical and societal biases, leading AI models to perpetuate or even exacerbate these biases when making predictions or decisions. To counteract this, it's crucial to curate diverse and balanced datasets that accurately represent the complexity of the real world, and employ techniques such as data augmentation to mitigate biases.
- Log in or register to contribute
Contribute to three or more articles across any domain to qualify for the Contributor badge. Please check back tomorrow for updates on your progress.